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Introduction 

 

1.1 Motivation  

Integrated circuits are becoming increasingly complex.  Today, state-of-the-art chips contain 

as many as 486 million transistors [], and that is number is expected to increase to 4.4 billion by 

2015 [].  This capacity is has enabled these integrated circuits (ICs) to provide the equivalent 

functionality of an entire system on a single device;, and hence, these large ICs are often called 

Systems-on-a-Chip (SoC) [].  However, Eensuring that such complex devices operate as 

expected is challenging.  Failures can occur because of design errors, fabrication errors, or 

impurities in the base silicon.  Of these, design errors are often the most difficult to uncover. 

The design of an integrated circuit typically follows a very structured methodology.  Designs 

are specified using a variety of techniques, and Computer-Aided Design (CAD) tools are used to 

translate these designs to transistors and then to physical layout information that can be directly 

fabricated.  At all levels of the CAD flow, tThe design is simulated in an attempt to identify as 

many design errors (bugs) as possible at all levels of the CAD flow.  In large designs, as much as 

50-70% of the pre-silicon design time is spent simulating the design [].  In addition, formal 

verification techniques are often employed to prove certain properties of the design (that the 

design has certain properties?) [ref, one of Alan's papers];.  when Together, simulation and 

formal verification are combined (considered together?), it is termed pre-silicon verification.  

Once the designer has achieved a certain level of confidence that the design is correct, the chip is 

manufactured. Creating the lithography masks required for manufacturing can cost up to $1.2 

million and take up to 16 weeks []. 

Regardless of how careful a designer is, a certain number of bugs will escape the pre-silicon 

verification process.  In the design of the Intel Pentium 4, researchers report that their simulation 



effort required 6000 processors, each running for two years, and that their effective simulation 

coverage was less than 1 minute of real time operation [].  Clearly, this is not sufficient to 

uncover all existing bugs which may exist.  Nonetheless, Yet it is important to find all these bugs 

before products are shipped; to not do so can be very costly.  For example, Iin a well-publicized 

incident, a simple bug in the floating point division unit of the original Pentium chip cost Intel 

Corp. approximately $475 Million [].   

The only way to find these bugs is to test manufactured chips.  Unlike pre-silicon 

verification, testing manufactured chips can provide a much larger coverage, because since the 

chip can run at-speed, and be connected to other integrated circuits in a larger system.  Testing 

of the chip after fabrication (Post-fabrication testing of the chip) is termed post-silicon 

validation,.  According which to the 2007 International Technology Roadmap for Semiconductor 

(ITRS) describes (defines?) as:, “Post-silicon validation … is “an area of verification which has 

grown rapidly in the past decade, mostly due to the large complexity of silicon-based systems…” 

[].  Recent studies have shown that 35% of development time now occurs after the initial device 

fabrication due to the need to employ post-silicon validation, and this proportion continues to 

grow []. 

When failures are observed Dduring post-silicon validation, when failures are observed, it is 

critical to uncover the source of the failure in the original design.  This process is termed post-

silicon debug.  Time-to-market pressure means that these design errors must be discovered 

quickly and.  Iit is also essential that as many errors as possible are uncovered before the chip is 

subject to another lengthy and costly manufacturing spin.  Yet, finding these bugs is very 

challenging, mainly because of a lack of internal visibility.  According to the same ITRS report 

quoted above, the key issue with post-silicon validation  “is the limited visibility inside the 

manufactured silicon parts.” [].  As designers continue to integrate more functionality on an 

integrated circuit, the complexity of these devices will increases significantly.  At the same time, 

the inter-component communications that could once be observed by probing traces on a printed 

circuit board (PCB), are moving inside the chip.  This leaves the validation process in the 

position of having to manage more complexity with less visibility.  In addition, as the likelihood 

of post-silicon bugs increases, the possibility that a bug will prevent extensive validation of the 

other portions of the chip concurrently increases.  This puts chip designers in the unfortunate 



position of having to potentially re-spin a device, simply to enable further validation (which may, 

in turn, discover another bug). 

Integrated circuit designers are attempting to address this issue by adding extra logic to their 

designs specifically to assist (better facilitate) the post-silicon debug process [].  New post-

silicon debug concepts are emerging.A that are analogous to design-for-test (DFT) 

methodologies whereby (OR wherein) designers add dedicated logic to their design to allow for 

(better facilitate?) efficient manufacturing test procedures, new post-silicon debug concepts are 

emerging.   

While it is possible to achieve some level of post-silicon debug by reusing re-using existing 

DFT structures and/or software debug facilities, it has been shown that these techniques are not 

sufficient for modern, high-performance integrated circuits and SoCs [].  Because of this, even 

designers of the latest high-volume, cost-sensitive, multi-core processors are willing to add extra 

logic to assist with the debug process.  The AMD Opteron and IBM Cell BE both contain 

specialized chip-level trace buffers that are not tied to a single processor core or software 

debugger, but are intended to debug system level issues [].  In both cases these debug resources 

have proved to be quite useful during the post-silicon validation phase.  The Cell BE validation 

team described the successful debug of an intermittent cyclic redundancy check (CRC) error in 

the bus interface controller (BIC) that was caused by an hardware initialization failure [].  

Likewise, the AMD validation team described the successful debug of a dead lock scenario in an 

8-node (4-(?) processor) configuration that was triggered after four days of continuous operation 

[]. 

Although these emerging techniques increase internal visibility to a degree, the current post-

silicon debug solutions are limited in a number of ways.  They are both quite design-specific, and 

are not flexible enough to handle many unexpected debug situations:  both the IBM and AMD 

proposals are limited to observing correctly formatted transactions on a specific internal 

interconnect, which significantly reduces the number of potential circuits that can be debugged 

on a given device, as well as the number of scenarios for which the debug resources are useful.  

For instance, if a design block ‘“locks-up’”, and ceases to generate new transactions, there will 

be no new transactions to observe.  In this case, tThe root-cause, in this case, is likely within the 

design block.  However, with the current proposals, these internal nodes cannot be observed with 

the current proposals (techniques? proposed techniques? technique proposals? solutions?).  



In addition, transactions are logged in dedicated, finite sized trace buffers and.  Aa  limited set of 

configurable triggers and compression techniques are employed to make more efficient use of 

these buffers.  , hHowever, since the nature of the bug is not known in advance, these triggers 

and compression techniques are not always appropriate.  Finally, since the debug information in 

these proposals is processed after the test, and not in real-time, there is no possibility to of taking 

action when an error is detected during normal operation. 

In this thesis, we propose a new reconfigurable post-silicon infrastructure that can be used to 

assist the debug of any digital circuit.  Similar to existing solutions, our proposal provides 

visibility into (enhances the visibility of OR facilitates the visibility of) the internal operation 

of the integrated circuit.  However, the use of general-purpose programmable logic at the core of 

our infrastructure enables a number of key methodologies that are not available in other 

proposals.  First, our proposal infrastructure has the flexibility to target arbitrary digital logic 

in a chip and is not restricted to specific circuits such as processor cores, (delete comma if 

system busses are specific circuits) or system busses.  Rather, it Instead our proposal can be 

used to monitor key aspects of the internal design, such as the current state (condition) of a 

state-machine.  The programmable logic thus allows us to build debug circuits to interpret any 

digital pattern.  Second, our proposal allows for complex, scenario-specific, event triggers as 

well as , event filtering, and trace compression, thereby making more efficient use of debug 

buffering;, enabling longer running debug scenarios;, and providing real-time monitoring.    

Third, our proposal enables the detection and potential correction of design errors during normal 

device operation by enabling the creation of new digital circuits in the programmable logic, 

which can operate in parallel with the normal operation of the device. , our proposal enables the 

detection and potential correction of design errors during normal device operation.  

We believe the availability of this type of dedicated debug logic will provide a number of key 

benefits in an integrated circuit development (OR the development of an integrated circuit), 

including: 1) reduced time-to-market because of an increased ability to quickly isolate and 

understand unexpected behaviours, 2) decreased resources required for post-silicon validation 

because of an increase in the functional coverage of a given test, 3) elimination of design 

revisions caused when (which result when) one design error hides a second (another) error, 

and 4) increased customer satisfaction because of the enhanced ability to provide quick ‘“work-

arounds’” to known bugs (quickly ‘work-around’ known bugs).  We expect that "design-for-



debug" structures will become commonplace in all large integrated circuits[]; and that structures 

such as ours will become a key part of this infrastructure. 

 

1.2 Focus and Contributions of this Thesis 

The focus of this thesis is the development of a new reconfigurable post-silicon debug 

infrastructure to enhance the validation of integrated circuits.  This new infrastructure addresses 

the (?) key limitations of existing solutions and provides a significant improvement on the 

state-of-the-art in this area (significantly improves on the state-of-the-art of debug 

infrastructures OR such infrastructures).  We address the architecture, operation and 

implementation of this infrastructure. Through the implementation we identify (In the 

implementation we identify OR The implementation allows us to identify) three key areas 

for targeted research: 1) the development of low- cost and low- depth network topologies for 

connecting fixed function circuits to circuits implemented in programmable logic, 2) the 

effective implementation of high-speed on-chip interconnects, and 3) the implementation of 

high-speed, rate-adaptive circuits in embedded programmable logic.  We address each of these 

key areas in detail in this thesis.  The results of these targeted research efforts both enable both 

the implementation of our infrastructure and provide results that can be extended to the 

implementation of integrated circuits in general.  Although Wwe have also considered the design 

of specialized programmable logic cores for the task of circuit debug [], however in this thesis 

we have decided to focus on the use of general-purpose programmable logic cores in this thesis.  

The research contributions of this thesis can, therefore, be grouped into four main areas,; each of 

which is summarized in the following subsections. 

 

1.2.1 A Reconfigurable Post-Silicon Debug Infrastructure 

The first major contribution of this thesis is the development of a new post-silicon debug 

infrastructure for complex integrated circuits and SoCs.  As the level of SoC integration 

continues to increase, the difficulty of producing a functionally correct chip continues to grow [].  

A significant effort is made during the SoC development process to verify the correct behaviour 

of the design prior to the manufacturing of the device.  Both simulation-based and formal 

methods are used for this pre-silicon verification, but however, devices are still manufactured 

which do not operate as expected [].  These functional defects, or bugs, are discovered in the 



post-silicon validation stage.  The process of determining the root- cause of these bugs is 

becoming a large component of the overall development cost [].  To address this, we propose a 

reconfigurable post-silicon debug infrastructure that enables the observation and control of 

internal signals.  We use programmable networks and embedded programmable logic to create 

our infrastructure.  The Its adaptive nature of our infrastructure is well suited to the problem of 

device debug since the bugs are, by their very nature, unexpected; .  Uunlike existing solutions 

[], our infrastructure it can be reconfigured for each specific debug scenario.  In addition, our 

reconfigurable infrastructure not only enables, not only, the diagnoses of bugs, but also allows 

the detection (and potentially the correction OR the potential correction) of errors in normal 

operation.   

(Inserted Paragraph Break) In Chapter 2 we describe the architecture, operation and 

implementation of our new infrastructure, and.  We then analyze the area overhead of the 

infrastructure. The results show that it is possible to implement our reconfigurable post-silicon 

debug infrastructure with an area overhead of less than 10% for a large proportion of our target- 

integrated circuits.  This work is significant because it demonstrates that it is possible to create a 

debug infrastructure with significant flexibility and that it is feasible to implement this 

infrastructure in an integrated circuit with a reasonably low area overhead.  

 

1.2.2 Concentrator Network Topologies of SoCs  

The second major contribution of this thesis is the construction of a new network topology 

that takes advantage of the flexibility of the programmable logic in our post-silicon debug 

infrastructure.  We use this flexibility to decrease the area overhead and improve the network 

timing of our proposal.  The area cost and performance of the programmable access network is 

an important factor in the efficiency of our overall infrastructure.  The number, depth and 

interconnection of the switches (i.e. the topology) have a direct impact on these factors.  We 

demonstrate that a class of unordered, non-blocking networks, called a concentrator (or a 

concentrator), is well suited to the task of connecting fixed function circuits to a programmable 

logic core.  Concentrator networks have been studied previously [].  In most cases the work has 

been theoretical with limited focus on the application of these networks.  In our case, these 

networks can take advantage of the flexibility of the input and output assignments on the 

programmable logic cores, which removes the ordering constraint.   



(Inserted Paragraph Break) In Chapter 3 we describe two new concentrator constructions.  

The first is shown to have a lower area cost (OR lower areas costs?) and lower switch depth 

(depths?) than previously described concentrators for network sizes that are of interest in our 

application.  The second network construction is optimized specifically for the post-silicon 

debug infrastructure.  It extends the first network construction to enable a network that can be 

partitioned into two levels of hierarchy.  We show that this network can be implemented with 

low area overhead, resulting in as little as 2% overhead for most of our target implementations.  

This work (quality, factor OR capability) is significant for our post-silicon debug 

infrastructure since it enables a more efficient implementation.  It is also salient significant to the 

more general problem of integrating embedded programmable logic into fixed functions (fixed-

function?) integrated circuits, since because it highlights an important element of flexibility on 

the interface between the two types of logic. 

 

1.2.3 Asynchronous Interconnect Network Design and Implementation 

The third major contribution of this thesis is the design and implementation of a new 

asynchronous interconnect network design that eliminates the need for top-level clock tree 

insertion while enabling high-speed operation for on-chip networks.  A major challenge with (to) 

the centralized programmable logic in our post-silicon debug infrastructure is the requirement 

that the access network spans the entire device and run at full speed.  Synchronous pipelining 

techniques have been proposed for this type of implementation [], but .  However, these 

techniques they require the design of a low-skew clock tree that is distributed throughout chip.  

As We present a  the new asynchronous interconnect design and implementation we present 

(the new asynchronous interconnect design and implementation we present) that does not 

require a global clock, it and therefore, it has a potential advantage in terms of design effort.     

      There have been a number of other asynchronous interconnect proposals [], but.  However, 

they se proposals were not well suited to implementations with standard CAD tools.  In contrast, 

our asynchronous interconnect design can be implemented using a standard ASIC design flow.  

In Chapter 3 (Accordingly OR To that end, in Chapter 3 - transition between sentences) we 

build on the two-stage concentrator network developed in Chapter 2.  We target the second stage 

of the network that is responsible for aggregating the signals from all parts of the die and also. 

We compare our proposal to a standard pipelined synchronous implementation.  The results 



demonstrate that there is a region of the design space where the asynchronous implementation 

provides an advantage over the synchronous interconnect by removing the need for clocked 

inter-block pipeline stages, while maintaining (and simultaneously maintains) high 

throughput.  We then demonstrate a CAD tool enhancement that would significantly increase the 

space where the asynchronous design has an advantage over a synchronous implementation.  In 

addition, wr We also provide a detailed comparison of the power, area and latency of the two 

strategies over a wide range of IC implementation scenarios.  This work (tool enhancement OR 

comparison) is significant to our implementation of a post-silicon debug infrastructure since it 

simplifies a challenging step in the insertion of our debug logic.  It is also significant to the 

general problem of integrated circuit design since because it demonstrates that it is possible to 

create effective asynchronous circuits using standard CAD tools, even though they (refers to the 

CAD tools) have been developed primarily for synchronous design styles. 

 

1.2.4 Enhanced Programmable Logic Core Architectures for High-Speed On-Chip Interfaces 

The fourth major contribution of this thesis is the development of enhancements to the 

architecture of embedded programmable logic cores (PLCs) in order to enable the 

implementation of high-speed, rate-adaptive interfaces circuits.  The architecture of our debug 

infrastructure requires interfacing high-speed fixed function logic (the circuits under debug) to 

circuits implemented in a programmable logic core (the debug circuits).  The primary challenge 

is managing the difference in timing performance between the fixed function logic and 

programmable logic.  The performance of the programmable logic will inevitability be lower 

than that of fixed logic [].  Without careful consideration the programmable logic may affect the 

performance of the overall debug infrastructure.  We address this problem by proposing changes 

to the structure of the PLC itself; these architectural enhancements enable circuit 

implementations with high performance interfaces.   

INSERTED PARAGRAPH BREAK In Chapter 5, we demonstrate PLC architectural 

changes that target both system bus interfaces and direct synchronous interfaces. These changes 

in the PLC architecture maintain all the key attributes of a general purpose PLC []; .  Tthe 

standard FPGA CAD tools for placement, routing and static timing still work with only slight 

modification [].  Our results demonstrate a significant improvement in PLC interface timing;, 

ensuring (which ensures) that interaction with full-speed fixed-function logic is possible.  We 



are able to show that we can do this without compromising the basic structure or routiblity 

(route-ability) of the programmable fabric.  In addition we show that these new structures are 

very area efficient.  The area impact on circuit designs that do not need to make use of our new 

enhancements is less than 1%.  These results are significant to our post-silicon debug 

infrastructure because, using these PLC enhancements, we are enables us to create debug circuits 

that are able to interact directly with the full-speed logic in the circuit under debug.  These results 

are also significant to the architecture of programmable logic cores and integrated circuits in 

general, since As the results y demonstrate that circuits implemented in programmable logic can 

interface directly to fixed- function circuits, they are also significant to the architecture of 

programmable logic cores and integrated circuits in general.. 

 


